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[1] Soil moisture availability has a significant impact on
environmental processes of different scales. Errors in initializing
soil moisture in numerical weather forecasting models tend to
cause errors in short-term weather and medium range predictions.
We study the use of two drought indices: Palmer Drought Severity
Index (PDSI) values and Standardized Precipitation Index (SPI) for
estimating soil moisture. SPI and PDSI values are compared for
three climate divisions: western mountains, central piedmont, and
the coastal plain in North Carolina, USA. Results suggest SPI to be
more representative of short-term precipitation and soil moisture
variation and hence a better indicator of soil wetness. A regre-
ssion equation that uses SPI is proposed to estimate soil
moisture. INDEX TERMS: 1866 Hydrology: Soil moisture;
1812 Hydrology: Drought; 1894 Hydrology: Instruments and
techniques; 3322 Meteorology and Atmospheric Dynamics: Land/
atmosphere interactions

1. Introduction

[2] Soil moisture is an important surface variable that modulates
the atmospheric surface energy balance and hence has a significant
impact on the vertical distribution of turbulent heat fluxes, as well as
the boundary layer structure [Alapaty et al., 1997]. Accurate soil
moisture representation is also known to significantly enhance
climate outlook projection and precipitation predictability [Koster
et al., 2000]. However, regionally representative soil moisture is a
difficult parameter to estimate. Soil moisture measurements are
limited, point-based, and show significant spatial variability. There-
fore development of a simple approach for estimation of soil
moisture on a regional scale is of immediate importance.
[3] Here we report the potential use of drought indices for

estimating soil moisture. Two drought indices: Palmer Drought
Severity Index (PDSI) and Standardized Precipitation Index (SPI)
are evaluated for representing soil moisture in this study.
[4] PDSI and SPI are generally used to assess the drought

conditions across the United States [Palmer, 1965; Alley, 1984;
McKee et al., 1993]. PDSI is defined as:

PDSIi ¼ 0:897PDSIi"1 þ 1=3ð Þzi; ð1Þ

where i is the current month (period), and zi is the difference
between total precipitation and the potential evapotranspiration and
runoff/recharge [Hu et al., 2000]. Estimation of PDSI is based on
monthly precipitation, temperature, and local ‘‘available water
content’’ (AWC) [Heddinghaus and Sabol, 1991]. Despite its
popularity, PDSI has several limitations as reviewed in Alley
[1984] and Guttman et al. [1992]. These include an inherent time
scale that reflects Palmer’s study, and the uncertainty of the index
to the AWC for different soil types. The Standardized Precipitation

Index (SPI), proposed by McKee et al. [1993], is an alternative to
PDSI. SPI represents a statistical z-score or the number of standard
deviations (following a gamma probability distribution trans-
formed to a normal distribution) above or below that an event is
from the mean [Edwards and McKee, 1997]. It was designed to
quantify precipitation deficit on multiple time scales and eliminate
some of the disadvantages of using PDSI. One advantage of SPI is
that it can be tailored to specific needs. For example, SPI are
routinely calculated for 1-, 3-, and 6- month periods [McKee et al.,
1995]. The premise of this study is that drought indices are
available and there is a potential to use them to infer regional soil
moisture status, which in turn can be used for several applications
including short and medium range weather predictions and for
providing seasonal climate outlooks [Pielke, 1998; Koster et al.,
2000].

2. Data

[5] Precipitation data were obtained for three climate divisions
(CDs) in North Carolina: divisions 1, 4, and 8 (indicated in Figure 1).
The three CDs represent different land-use and topographical
features (Division 1 is mountainous, 4 is semi-urban, and 8 corre-
sponds to the coastal region). Monthly PDSI values for these CDs
were obtained from the National Climatic Data Center (NCDC) and
the National Drought Mitigation Center (NDMC). SPI values were
obtained using the precipitation data from select stations in these
regions and with the use of the method suggested by Edwards and
McKee [1997]. Daily, weekly, biweekly, and monthly SPI were
determined in an attempt to find the best fit for anomalous precip-
itation data sets. Precipitation anomalies were developed by remov-
ing the average precipitation amount from the individual
precipitation events for the specified time period. Soil moisture
observations were obtained from automated agro-meteorological
towers available as a part of the North Carolina AgNet using time-
domain reflectometery [Niyogi et al., 1998; Noborio, 2001].

3. Comparing SPI, PDSI, and Precipitation
Anomalies

[6] Intuitively, soil moisture values depend on precipitation
amounts. However, precipitation has significant spatial variability
and a co-varying factor is needed to develop the soil moisture
estimates. The drought indices such as SPI and PDSI, are also
dependent on the precipitation occurrence, and can be hence
considered to co-vary with soil moisture.
[7] One-month SPI were calculated from 1994 to 1999 and

compared with the monthly average precipitation anomalies from
CDs 1, 4, and 8. Corresponding monthly PDSI values were also
compared to the precipitation anomalies for the same period. These
are overlaid with the CD1 SPI and precipitation anomaly time–
series in Figure 2. For all the three CDs, the SPI values are in phase
with the precipitation anomalies and followed the curve closely.
This is expected, since SPI can be considered as a measure of
precipitation anomaly; but the coherent and in-phase variations are
particularly encouraging. In comparison, PDSI values, though

GEOPHYSICAL RESEARCH LETTERS, VOL. 29, NO. 8, 1183, 10.1029/2001GL013343, 2002

1Now at MCNC Environmental Modeling Center.

Copyright 2002 by the American Geophysical Union.
0094-8276/02/2001GL013343$05.00

24 - 1



generally are in phase, do not follow the precipitation anomaly as
closely as the SPI values for the same period. The amplitude for
PDSI values is damped as compared to the precipitation anomalies.
That is, PDSI follows the general trend of precipitation changes but
does not capture the extremes as well. Results for divisions 4 and 8
yield similar results (not shown) between the SPI, PDSI, and
precipitation anomaly as for CD1 (Figure 2).
[8] The PDSI response time appears to lag behind the respective

SPI and the precipitation anomaly variations. This lag is more
evident when comparing data from CDs 4 and 8 (typical lag of the
order of 3 months behind the precipitation anomaly). The occur-
rence of a precipitation anomaly is not apparent from the PDSI
variation (but is seen in SPI). To address the issue of temporal and
phase changes further, fast fourier transforms (FFT) of the two
drought indices and precipitation time series were calculated for
each CD. The FFT estimates clearly identified seasonal, semi
annual and annual peaks in the precipitation time series for all
the CDs. A sample plot for CD1 is shown in Figure 3. The
significant peaks became less distinguishable for the coastal region
(not shown). This could be related to higher precipitation fre-
quency as expected from events such as coastal storms, coastal
fronts, and sea breeze occurrences along the coast. As discussed in
Guttman et al. [1992], PDSI is better suited for semiarid and dry

climate regions and hence, as seen in our results, the ability for
PDSI to represent the anomaly appears to be inversely related to
the precipitation frequency. Heddinghaus and Sabol [1991] also
discuss such conditions where anomalous precipitation may be
enough to end a drought period defined by PDSI. Further, an
anomalous precipitation event can affect PDSI values for several
months, even though the actual dry period may not have ended.
[9] Overall, SPI appears to be better suited, compared to PDSI,

for representing precipitation variability and hence resulting soil
moisture changes at a short time scale (weeks to months). Accord-
ingly, daily and weekly SPI were also calculated and compared to
the respective precipitation anomalies (not shown). These short
time scale SPI variations were also in phase with precipitation
changes. Interestingly, although the phase is the same for the SPI
and the precipitation changes, SPI gives some erroneous spikes and
is offset (positive bias) from the precipitation anomaly time-series.
This suggests there could be a temporal lower limit (order of a
week) for the derivation of meaningful quantitative relationships
such as soil moisture from SPI.

4. Analysis of SPI, PDSI, and Soil Moisture
Variations

[10] Soil moisture and precipitation data were obtained from the
North Carolina Agricultural Network (AgNet) stations [Niyogi et
al., 1998]. The locations of the monitoring sites used in this study
are shown in Figure 1. Monthly and biweekly SPIs, and monthly
PDSI values were obtained for the same time period. We test the
hypothesis that SPI can be used as a surrogate for estimating soil
wetness. This hypothesis stems from the assumption that, for a
short time scale, a positive precipitation anomaly can generally be
indicative of higher soil moisture and vice versa.
[11] For comparison, SPI and PDSI were normalized by off-

setting the time series such that the minimum value corresponds to
zero; and then dividing by the new (offset) maximum value. Thus,
an independent scale for normalizing these offset SPI (OSPI) is
considered as:

NSPIi; j ¼
OSPIi; j

max OSPIi; j
! "

; ð2Þ

Figure 1. A map of North Carolina showing the different climate
divisions. Divisions 1, 4, and 8 are used in this study. The sites of
the soil moisture measurements are also indicated.

Figure 2. Monthly PDSI, SPI, and precipitation anomalies for
climate division 1. The time series is indicated by months beginning
in January 1994 and continuing through December 1999. The
vertical axis corresponds to precipitation anomaly (in), SPI and
PDSI values. Overall, SPI is in-phase with the precipitation
anomalies while PDSI has a slower response time.

Figure 3. Fast Fourier Transforms (FFT) of precipitation over a
6-year period for climate division 1 using SPI as the indicator. The
x-axis corresponds to the months showing the seasonal, semi-
annual, and annual peaks (labeled as A, B, and C, respectively).
The y-axis (unitless) shows the relative energy associated the
significant peaks.
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where OSPIi,j is the offset SPI at time i and location j [and equals
SPIi,j " min(SPIi,j)] and NSPIi,j is the normalized OSPIi,j. Similar
normalization was performed for PDSI. The soil moisture
observations were normalized with the consideration of wilting
and saturation as the minima and maxima, respectively [e.g.,
Alapaty et al., 1997]. This normalization was performed to simply
compare the time series variations between similar scales (0 to 1).

[12] Figure 4 shows the plots of normalized soil moisture and
normalized SPI for comparison. Because of the slow response time
and the inability of PDSI to model the soil moisture, PDSI plots are
not shown. The general pattern of the SPI variation follows the
trend of soil moisture though a phase lag is evident. This result
indicates that SPI values can be used as a potential indicator of soil
moisture status.
[13] A scatter plot between normalized biweekly SPI values and

normalized soil moisture is shown in Figure 5. Thus, soil moisture
can be estimated as a linear function of SPI. This relation can be
approximated as a fraction of the normalized biweekly SPI. Similar
linear relations were obtained with different SPI lag times (weekly,
biweekly, 1-, 3-, 6-, and 12- months) for different locations (e.g.,
Clayton in central NC, and Asheville in western NC). Overall, the
results suggest that the normalized soil moisture can be approxi-
mated as about 75% of the normalized SPI. It should be empha-
sized that on comparing different cases it appears that this 75% is
only an estimate and the actual value may vary from about 60 to
90% depending on the averaging period and location. This varia-
bility can be attributed to several factors but changes in soil types
appear to be the main contribution and needs to be investigated
further.
[14] Figure 6 shows the observed and SPI estimated soil

moisture variation at Fletcher, NC. The soil moisture was
observed at a depth of 10-cm. The soil moisture estimate
(‘modeled’) was assumed as 75% of the normalized SPI. The
resulting value was multiplied by the saturation soil moisture
(considered as 0.7 m3m"3 for this site) to obtain volumetric
values.
[15] Overall, short-term averaging (&1 to 3 months) yielded

the highest correlation between normalized SPI and normalized
soil moisture (observed at the 10 cm depth). Deeper soil layers
may show better correlation with longer averaging times and can
be tested when data are available. Thus, the results indicate that
SPI can be used as a surrogate for obtaining soil moisture
information.

Figure 4. Variability of the normalized soil moisture, and
biweekly SPI at Fletcher, NC. The solid line corresponds to
normalized biweekly SPI (Normalized SM), while the dashed line
is the normalized soil moisture. Though there is a phase lag, the
overall variability in the soil moisture is captured.

Figure 5. Relation between the normalized biweekly SPI and
normalized soil moisture variation at Lewiston, NC. For this case, a
correlation of 0.71 is obtained and suggests that soil moisture can
be approximated as a fraction (typically 75% as discussed in the
text) of normalized SPI.

Figure 6. Observed and ‘modeled’ soil moisture at Fletcher, NC.
The observations were taken continuously at a depth of 10 cm
(every hour and then averaged to a day). The ‘modeled’ value is
estimated as 75% of the SPI (normalized as discussed in the text),
multiplied by the saturation limit of the soil (taken as 0.7 m3 m"3

for this site).
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5. Conclusions and Future Applications

[16] This study suggests that drought indices can be used to
develop soil moisture estimates. Specifically, SPI closely models
precipitation anomalies on short-term time scales, and also appears
to estimate soil moisture well. While PDSI values approximate the
general trend of precipitation distribution, it is not representative of
short-term time-scale variations. Results suggest that SPI appears
to be better suited, than PDSI, for monitoring short-term surface
soil moisture deficit (also an indicator of agricultural drought) in
North Carolina and possibly southeast United States [see also
NDMC, 1999].
[17] Developing SPI as a soil moisture indicator has some

inherent advantages. SPI maps are routinely generated for the
United States [NDMC, 1999] and can be constructed for other
parts of the world. These maps can be used to initialize numerical
weather forecasting models and developing ‘area–averaged’ (as
against ‘point’) soil moisture estimates. Other important applica-
tions include using SPI based soil moisture analysis in near real
time drought monitoring and region specific seasonal forecasting
[e.g., Koster et al., 2000]. This would provide a more mechanistic
approach when developing a regional policy concerning drought.
Climate models may also benefit from using SPI for initializing
soil moisture into land surface model domains as discussed for
example in Pielke [1998].
[18] The linear relationship suggested from the correlation

between SPI and soil moisture values, needs additional analysis.
Questions include, what SPI period (biweekly, monthly, 3 month,
or 6 month) has the best signature of soil moisture variations;
what is the influence of the soil type variability; and the
correlation between SPI, PDSI, and other drought indices with
deeper soil moisture values. However, our results do suggest that
drought indices hold a promise to develop this information
further.
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